## APAC 2016: Statistics, Significance, and Service

I’ve started a new site for service-learning resources in mathematics: SLmath.com.

This week I am leading a workshop at the 2016 AP Annual Conference on “Statistics, Significance, and Service” in Anaheim, CA. The talk is on integrating service-learning projects into AP Statistics curriculum, specifically with the goal of impacting students on an affective level. In addition to the resources that you will find below, feel free to check out some of the prior posts on service learning:

ABSTRACT:

This session will equip participants to design, implement, and evaluate service-learning based statistics projects in which students partner with non-profit organizations in their local community. These projects synthesize the major concepts of experimental design, data analysis, and statistical inference in the real-world context of community service, ultimately cultivating in students a deeper appreciation for the discipline of statistics. In this session participants will evaluate successful examples of such projects, critically analyze the benefits of the innovative assessment methods involved, and engage in discussion assessing the feasibility and logistics of implementing service projects in their own curriculum.

(This session will expand on the session “Serving the Community through Statistics” from the 2015 AP Annual Conference by including results of my completed dissertation research on cultivating a productive disposition in statistics students through service learning)

PRESENTATION:

You can click the image below to find the PowerPoint that accompanied my presentation.

10 THINGS TO CONSIDER BEFORE IMPLEMENTING A SERVICE-LEARNING PROJECT:

The following are the foundational questions that you as an instructor should consider and reflect upon prior to implementing a service-learning project. This list is not meant to be chronological though some aspects will naturally precede others. Start by considering the course learning objectives and your method of assessing those objectives and then go from there.

1.What are the major learning objectives/big ideas/enduring understandings for your course?

The purpose of the AP course in statistics is to introduce students to the major concepts and tools for collecting, analyzing and drawing conclusions from data. Students are exposed to four broad conceptual themes:

• Exploring Data: Describing patterns and departures from patterns
• Sampling and Experimentation: Planning and conducting a study
• Anticipating Patterns: Exploring random phenomena using probability and simulation
• Statistical Inference: Estimating population parameters and testing hypotheses

2. What are real-world situations where students can apply the concepts studied in your course?

• Identifying a non-profit service agency which requires survey research (program evaluation, client needs assessment, etc.)
• Students develop a survey instrument, conduct survey, compile and code data, analyze data, present results

3. List some potential community partners along with some basic descriptors that may impact how your students work with each partner (ex: What is the size of the organization? What issues does the organization address? Is the organization non-profit, governmental, religiously affiliated? Etc.) In lieu of a partner organization you can also consider a general community need for students to address. List some general descriptors of the project involved in addressing this community need.

4. Look for potential matches between organizations on your list from question 3 and your responses to questions 1 and 2. If there are multiple potential matches then consider the pros/cons of each and list them. Be sure to recognize how your matching affects the organization of the project (large scale as a class v. small scale as groups), which in turn may affect your response to question 5 below.

5. Once you have begun narrowing potential community partners that offer opportunities for students to interact with course content, consider how will you assess students? What will be the final product? What expectations will you have for students throughout the project and how will you communicate that to the students?

6. How will students be organized to meet the objectives that they will be assessed on? Will students work as individuals, teams, as a whole class?

7. How will students be equipped to complete the project successfully? What will they have gained from the course up to the point of assigning the project that will aid them? What additional tools/skills/knowledge will students need as the project proceeds?

8. What will be the timeframe for the project? How will students be held accountable to the timeframe? At what points will students receive feedback on their progress?

9. Why should students care about the project? What will you do as an instructor to get student buy-in on the project?

10. How will students reflect throughout the project? What opportunities will you provide for students to pause and consider the work they have done?

HANDOUTS:

From my 2015-16 AP Statistics Project (Organized as an entire class project over the full year):

From my 2014-15 AP Statistics Project (Organized as small group projects in the spring semester):

*NOTE: some documents above were also used in this project, either in the form in which they are posted above or in a slightly modified version

Hadlock, C.R. (2005). Mathematics in service to the community: Concepts and models for service-learning in the mathematical sciences. Washington, DC: Mathematical Association of America.

Chapter 3: Service-Learning in Statistics

Reed, G. (2005). “Perspectives on statistics projects in a service-learning framework.” In C.R. Hadlock (Ed.), Mathematics in service to the community: Concepts and models for service-learning in the mathematical sciences. Washington, DC: Mathematical Association of America.

Root, R., Thorme, T., & Gray, C. (2005). “Making meaning, applying statistics.” In C.R. Hadlock (Ed.), Mathematics in service to the community: Concepts and models for service-learning in the mathematical sciences. Washington, DC: Mathematical Association of America.

Sungur, E.A., Anderson, J.E., & Winchester, B.S. (2005). “Integration of service-learning into statistics education.” In C.R. Hadlock (Ed.), Mathematics in service to the community: Concepts and models for service-learning in the mathematical sciences. Washington, DC: Mathematical Association of America.

Hydorn, D.L. (2005). “Community service projects in a first statistics course.” In C.R. Hadlock (Ed.), Mathematics in service to the community: Concepts and models for service-learning in the mathematical sciences. Washington, DC: Mathematical Association of America.

Massey, M. (2005). “Service-learning projects in data interpretation.” In C.R. Hadlock (Ed.), Mathematics in service to the community: Concepts and models for service-learning in the mathematical sciences. Washington, DC: Mathematical Association of America.

Chapter 6: Getting Down to Work

Webster, J. & Vinsonhaler, C. (2005). “Getting down to work – a ‘how-to’ guide for designing and teaching a service-learning course.” In C.R. Hadlock (Ed.), Mathematics in service to the community: Concepts and models for service-learning in the mathematical sciences. Washington, DC: Mathematical Association of America.

“Service-Learning and Mathematics” webpage:

Bailey, B. & Sinn, R. (2011). “Real Data & Service Learning Projects in Statistics.” Service-learning in collegiate mathematics, MAA contributed paper session, 2011 Joint Mathematics Meetings, New Orleans, LA.

Hydorn, D. (2011). “Community Service-Learning in Mathematics: Models for Course Design.” Service-learning in collegiate mathematics, MAA contributed paper session, 2011 Joint Mathematics Meetings, New Orleans, LA.

PRIMUS, Vol. 23 (6)

Hadlock, C.R. (2013). “Service-learning in the mathematical sciences.” PRIMUS, Vol. 23 (6), pp. 500-506.

Other

Lynn Adsit’s blog on implementing a service-learning project in AP Stats

Harry, A. & Troisi, J. (2014). “Service-Oriented Statistics.”

Hampton, M.C. (1995). Syllabus for Intro to Statistics. University of Utah.

Duke, J.I. (1999). “Service-Learning: taking mathematics into the real world.” The Mathematics Teacher, 92 (9), pp. 794-796, 799.

Leong, J. (2006). High school students’ attitudes and beliefs regarding statistics in a service-learning-based statistics course. Unpublished doctoral dissertation. Georgia State University.

For many of the service-learning projects that my students have completed I am indebted to the willing partnership of Mobile Loaves and Fishes. Here is some introductory information on this great ministry:

Community First! Village Goes Beyond Housing for Austin Homeless, from the Austinot