Service-Learning in Mathematics Workshop

Screen Shot 2017-06-09 at 11.57.58 AM


Regents School of Austin, where I teach, will be hosting an institute for teachers and I’ll be leading a workshop on implementing service-learning in math courses. The target audience is math teachers at any level K-16 or pre-service math teachers.

Here are the details:

This workshop will assist you in developing successful service-learning projects in mathematics. Service-learning projects engage students in integrating their conceptual understanding of mathematics with the practical functioning of their local community. Ultimately students gain deeper content knowledge and a deeper appreciation for the role math plays in society.

Several examples of service-learning projects will be presented in detail from geometry and statistics, as well implementable ideas for other math courses. You will have the opportunity to brainstorm and work in conjunction with other educators to analyze the key components of a successful project, engage in discussion assessing the feasibility and logistics of implementing service projects in your own curriculum, critique project evaluation rubrics, and begin the design of your own service-learning project.

You will leave this workshop equipped to:

  • Determine the keys to a rewarding service-learning experience (after hearing personal testimony from students and community partners)

  • Modify and implement sample materials from past Regents projects (including project descriptions, calendars, and grading rubrics)

  • Connect the enduring understandings of your course with a community need

  • Evaluate student learning outcomes in keeping with your curriculum

  • Engage students with meaningful applications of math in the personal context of their local community

If you are interested, here is the link to registration page (that contains further details). 

The cost is $250 for the service-learning in math session (this isn’t completely clear on the registration page). Feel free to contact me if you have any questions and please share with colleagues that you think might be interested.

SCL 2017: Cultivating Mathematical Affections through Service-Learning

This week I am giving a presentation at the 2017 Society for Classical Learning (SCL) conference on “Cultivating Mathematical Affections through Service-Learning.” The talk is on integrating service-learning projects into mathematics curriculum, specifically with the goal of impacting students on an affective level. Since this is my dissertation topic, I’ve presented on it numerous times before – and now that my dissertation is done (!), I hope to finally be able to devote more time to building out resources on this site. In addition to the resources that you will find below, feel free to check out some of the prior posts on service learning:



This session will examine the benefits of service-learning projects in mathematics. Service-learning projects engage students in integrating their conceptual understanding of math with the practical functioning of their local community. Ultimately students gain deeper content knowledge and a deeper appreciation for the role math plays in society.


You can click the image below to find the PowerPoint that accompanied my presentation.

Screen Shot 2017-06-18 at 8.53.29 PM

For many of the service-learning projects that my students have completed I am indebted to the willing partnership of Mobile Loaves and Fishes. Here is some introductory information on this great ministry:

How a Food Truck, Faith and Community Welcomes the Homeless, from the Huffington Post.

“Teaser” for Inferno Films latest feature documentary. from layton blaylock on Vimeo.


The following are the foundational questions that you as an instructor should consider and reflect upon prior to implementing a service-learning project. This list is not meant to be chronological though some aspects will naturally precede others. Start by considering the course learning objectives and your method of assessing those objectives and then go from there.

1.What are the major learning objectives/big ideas/enduring understandings for your course?

2. What are real-world situations where students can apply the concepts studied in your course?

3. List some potential community partners along with some basic descriptors that may impact how your students work with each partner (ex: What is the size of the organization? What issues does the organization address? Is the organization non-profit, governmental, religiously affiliated? Etc.) In lieu of a partner organization you can also consider a general community need for students to address. List some general descriptors of the project involved in addressing this community need.

4. Look for potential matches between organizations on your list from question 3 and your responses to questions 1 and 2. If there are multiple potential matches then consider the pros/cons of each and list them. Be sure to recognize how your matching affects the organization of the project (large scale as a class v. small scale as groups), which in turn may affect your response to question 5 below.

5. Once you have begun narrowing potential community partners that offer opportunities for students to interact with course content, consider how will you assess students? What will be the final product? What expectations will you have for students throughout the project and how will you communicate that to the students?

6. How will students be organized to meet the objectives that they will be assessed on? Will students work as individuals, teams, as a whole class?

7. How will students be equipped to complete the project successfully? What will they have gained from the course up to the point of assigning the project that will aid them? What additional tools/skills/knowledge will students need as the project proceeds?

8. What will be the timeframe for the project? How will students be held accountable to the timeframe? At what points will students receive feedback on their progress?

9. Why should students care about the project? What will you do as an instructor to get student buy-in on the project?

10. How will students reflect throughout the project? What opportunities will you provide for students to pause and consider the work they have done?


From my AP Statistics Project:

Screen Shot 2016-06-29 at 1.09.07 PM

Screen Shot 2016-06-29 at 1.10.27 PM

From my Geometry project:

Screen Shot 2016-06-29 at 1.08.28 PMScreen Shot 2016-06-29 at 1.08.42 PM

Screen Shot 2016-06-29 at 1.38.50 PM


ACMS 2017: Cultivating Mathematical Affections through Engagement in Service-Learning

Here is some information on my talk at the 21st ACMS Conference (2017) at Charleston Southern University.


Why should students value mathematics? While extensive research exists on developing the cognitive ability of students, very little research has examined how to cultivate the affections of students for mathematics. The phrase “mathematical affections” is a play on the affective domain of learning as well as on the general notion of care towards something. Mathematical affections are more than a respect for the utility of the subject; the term is much broader and includes aesthetic features as well as habits of mind and attitude.

This paper will analyze the findings from a research project exploring the impact of service-learning on the cultivation of mathematical affections in students. This was a qualitative case study of high school students who recently completed a service-learning project in their mathematics course. Data was gathered from student interviews, reflection journals, and field observations. The framework for the analysis follows the definition of “productive disposition” offered by the National Research Council (2001) as well as the concept of formative “cultural liturgies” offered by the philosopher James K.A. Smith (2009).

The major themes that emerge from the data indicate that through service-learning students see math as sensible, useful, and worthwhile. This supports the potential of service-learning as a pedagogical tool that can be utilized to develop a productive disposition in students; addressing at a practical level how the affective objectives of national policy documents can be achieved.


Screen Shot 2017-06-01 at 10.21.51 PM


Goldin, G.A. (2002). Affect, meta-affect, and mathematical belief structures. In G.C. Leder, E. Pehkonen, & G. Törner (Eds.),  Beliefs: a hidden variable in mathematics education? Netherlands: Kluwer Academic Publishers, pp. 59-72.

Hadlock, C. R. (2005). Mathematics in service to the community: Concepts and models for service-learning in the mathematical sciences (No. 66). Mathematical Association of America.

Krathwohl, D.R., Bloom, B.S., & Masia, B.B. (1964). Taxonomy of educational objectives: Handbook II. Affective Domain. New York: Longman.

National Research Council (2001). Adding it up: Helping children learn mathematics. Washington D.C.: National Academy Press.

Smith, J.K.A. (2009). Desiring the kingdom: Worship, worldview, and cultural formation. Grand Rapids, MI: Baker Academic.

Wilkerson, J. (2015). Cultivating Mathematical Affections: The Influence of Christian Faith on Mathematics Pedagogy. In Perspectives on Science and Christian Faith, 67(2), 111-123.