A Triune Philosophy of Mathematics

by Dusty Wilson, Highline College

The following is from a talk given by Dusty Wilson at the ACMS Conference this past May. It is with his gracious permission that I am sharing it here. Here is a link to a previous talk given by Dusty on “Where does mathematics come from?”

Abstract

What is mathematics and is it discovered or invented? The Humanist, Platonist, and Foundationalist each provide answers. But are the options within the philosophy of mathematics so limited? Rather than viewing and describing mathematics in a mutually exclusive manner, each of these approaches includes components of truth from a greater triune philosophy of mathematics. This paper will briefly outline existing philosophies and then introduce an inclusive triune paradigm through which to explore fundamental questions about mathematics.

1 Introduction

My parents were hippies who were leery of traditional education. So out of a desire to both protect and also encourage questioning they put me into alternative public schools. These weren’t edgy enough and so they allowed me to homeschool junior high into high school. This put me on a fast track and I began community college during what would have been my junior year of high school. I jumped right into calculus and worked my way through differential equations. After two years I transferred to The Evergreen State College to continue my alternative education with an interdisciplinary liberal arts degree studying political science, literature, and mathematics. With such an eclectic background, I didn’t have a clear direction following my bachelor’s degree so I went on to graduate school in mathematics thinking, “If this doesn’t work out, I can do something else later.” While a graduate student I was given the opportunity to teach and my career path suddenly became clear. I was hired by Highline College right out of graduate school where I became the youngest tenured faculty member in College history.

While this makes me sound smart, it really means that I had a lot of growing to do as an educator and colleague. But I was in a supportive environment and by my eighth year I was firmly established as a teacher, in service, and in professional growth, and I generally felt that I knew my professional direction. In 2008 I attended a talk by a colleague [2]. The talk itself was on polling and statistics and not related to this paper. However in the midst of the lecture my coworker said, “I think math was invented by people, not discovered.”

Is math discovered or invented? In all my non-traditional education as well as traditional community college and graduate studies and then continuing into the first eight years of my professional work, I don’t once recall having asked myself the question, “Where does math come from?” But while this was the first time these ideas had ever registered in my mind, I have come to realize over the last seven years of study that I had subconsciously adopted a framework for understanding mathematics. As John Synge said, “[E]ach young mathematician who formulates his own philosophy — and all do — should make his decision in full possession of the facts. He should realize that if he follows the pattern of modern mathematics he is heir to a great tradition, but only part heir.” [9, pp. 166] This certainly encapsulates my mathematical journey.

As I have come to have “full possession of the facts”, I’ve learned that there are three main ways to explain the origin of mathematics. Within each of these broad categories there is a spectrum of nuance. Others have written compelling descriptions of this, but allow me to outline using broad strokes so that I may synthesize the field. The three broad views are as follows.

Foundational philosophies: Mathematics is developed from axioms and definitions using logic

Humanistic philosophies of mathematics: Mathematics is invented by humans who are the source of math

Mathematical Platonism Also called ’mathematical realism’, this view holds that mathematics exists ‘out there’ to be discovered; perhaps owing its existence is to God, but perhaps not

While some readers may recognize or be able to articulate their philosophy of mathematics, others may resonate with my story in that I was years into my career as a professional without realizing that I even had a view. I believed mathematics devoid of presupposition without even having the vocabulary to articulate my own presupposition about the field. So as I clarify the basic views available for later synthesis, I encourage you to ask yourself where these views match your training, intuition, and pedagogy.

2 The Foundational Philosophies

The first paradigm is that math is logic — this is the basis of the foundational philosophies: intuitionism, logicism, and formalism. If you do research on the philosophy of mathematics, these three views are described over and over again to the point that they nearly define the field.

The intuitionists such as Kronecker and Brouwer held that humans create the axioms of logic/mathematics and that we then manipulate these axioms to construct the theorems of mathematics in a constructivist manner. Because it stems from our work, the intuitionism shows existence by demonstrating a formula/algorithm/recipe to explain how each entity may be constructed. Because of this, intuitionists rejected proof by contradiction as well as the existence of an actual infinity. For them the source of mathematics was decidedly human. Or as Kronecker famously wrote, “God made the integers, all else is the work of men.” [11, pp. 19]

figures

The logicists movement was begun by Frege, reached its height with Russell and Whitehead, and concluded with Godel. They felt that the axioms of logic were self-evident truths that were known intuitively to the logician. They accepted the rules of logic apriori. In their effort to make solid their foundation, they held that some axioms were self-evident that are not so evident. Certainly the axiom of choice is on this list. Of the foundational camps, logicism was the most fully developed. For the logicist, the source of mathematics was beyond the human experience, self-evident, and discovered (albeit by a select few).

The formalists led by Hilbert were perhaps the largest group. They did not concern themselves with the source of the axioms but worked from these using every clever device they could devise. They had no issue with contradiction or infinity. Hilbert referred to math as a meaningless game. [1, pp. 21] The formalist didn’t have a strong opinion about where mathematics comes from; after all, it didn’t matter anymore than the source of Chess or Monopoly.

3 Mathematical Humanism

The second paradigm is mathematical humanism: all mathematics is somehow human in nature/origin. Unlike the foundational philosophies, the subcategories are not as clearly defined. In part this is because mathematical humanism is more current and thus hasn’t had as much time to mature. The spectrum within mathematical humanism that I will discuss ranges from a biology-brain model, to language, and ends with social constructivism. Of these, the idea that math is a language is probably the oldest while social constructivism seems most dominant among educators.

According to authors Lakoff and Nunez, our ability to perform abstract reasoning is biological. [8, pp. 347] Mathematics is ultimately grounded in experience. [8, pp. 49] It is effective because mathematics is a product of evolution and culture. [8, pp. 378] Mathematics doesn’t have an independent existence. It is culture dependent and only exists through grounding metaphors. [8, pp. 3 356, 368] Consequently the philosophy of mathematics is the realm of cognitive science and not the domain of mathematicians. [8, pp. xiii] Where does mathematics come from? For these philosophers, the source of mathematics is biological and evolutionary and thus serves only an evolutionary purpose. . . which is to say it has no intended purpose.

Perhaps the most commonly held humanistic philosophy of mathematics is summed up in the phrase, “Mathematics is the language of science.” This originates with Galileo who wrote: “[The universe] cannot be understood unless one first learns to comprehend the language and read the letters in which it is composed. It is written in the language of mathematics, and its characters are triangles, circles, and other geometric figures without which it is humanly impossible to understand a single word of it.” [3, pp. 4] Today this phrase is most often used outside of university math departments because it defines mathematics through its applications and universities produce pure mathematicians (more akin to the formalists of the foundational movement). The basic premise of the view is that mathematics is invented as a way to describe discoveries in the natural world. Math isn’t monolithic and unchanging because language changes. The strength of this view is that it seems to explain the perceived transcendence and beauty in math by tying it back to science.

Mathematics is something people do according to Reuben Hersh. [5, pp. 30] The philosophy of mathematics is the study of what mathematicians do. [5, pp. xii] The emphasis of social constructivism is on practice. As a practice there has been an evolution of mathematical knowledge. [5, pp. 224] This extends even to including proof itself. [5, pp. 6] As such, mathematics is a social construction. It draws on conventions of language, rules, and agreement in establishing truths. Mathematical knowledge and concepts change through conjectures and refutations. The focus is on creation rather than the justification knowledge. [5, pp. 228]

4 Mathematical Platonism

The third paradigm is mathematical Platonism (or mathematical realism) and is loosely based on the Plato’s theory of forms and divided line. There is less explicitly written supporting Platonism (and much against). However many mathematicians are Platonists although not aware of it. Some know it and are reluctant to admit it because it seems mystical. Unlike the foundational philosophies and mathematical humanism, there is less written on the subtlety and nuances of Platonism. Thus the spectrum that I am about to describe is of my own creation (that is, unless I happened to get it from some abstract realm).

As given in Principia, Russell practiced what I dub, “finite mathematical Platonism.” He began from a short list of self-evident “discovered” axioms. Then mathematics was built/created from these few eternal building blocks. This is a similar approach to that taken by Euclid. Finite Platonism gels nicely with the axiomatic method. It probably isn’t a stretch to claim that the opti- 4 Mathematical Platonism/Realism Finite Axioms Countable Uncountable (All Truth) (Kitchen Sink) Figure 3: How much lies within the Platonic realm? mism following the “discovery” of Newton’s laws stemmed from this same view: namely that the universe could be described by just a few simple laws. Today physicists are searching for the theory of everything . . . a few simple statements to describe all. In this view, very little is required of the mathematical form (which only contains a few statements) and much of the human mathematician (who massages the few givens into the body of mathematics). So where does mathematics come from? Well it begins with a few eternal truths and then is created by the mathematician.

realism

The most widely held version of realism holds that all mathematical truth is found “out there” (in the Platonic form). This includes triangles, pi, and the golden ratio. It also includes every real number (yes, I know they are uncountable) and proofs big and small (think the proof of Pythagorean theorem vs. that of Fermat’s Last Theorem). That is every true mathematical statement (regardless of how useful or elegant) can be discovered in the form. One author, Lakoff, calls this the romance of mathematics. [8, pp. xv]

Finally, the philosopher Alvin Plantinga affirmed what I call an uncountable mathematical Platonism. As a theist, he holds that math exists in the mind of God. He sees all mathematical entities as uncreated necessary beings whose existence is affirmed by God’s nature. For Plantinga, God affirms the existence of all propositions, states, and possible worlds. But God affirms the truth of only some. [10, pp. 143] This is a kitchen sink view. That is everything exists “out there” to be discovered—true and false. But not all is true.

5 Mutually Exclusive Models?

In my reading, most authors want you to choose one and only one paradigm. They often use an elimination argument to justify their position. For example, a typical humanist’s argument might be summarized: formalism is dead and Platonism requires God. Thus the only option remaining to us is humanism. The problem is that this assumes that (a.) the discussed options are disjoint, (b.) that all the options are being considered, and (c.) that the premises are correct. I am going to focus on the first assumption: namely that the options are disjoint.

At first glance, Platonism, humanism, and the foundational views seem mutually exclusive (disjoint). If math is discovered “out there” then it can’t originate within us. If it comes from within us, then it isn’t a game we play, and certainly a meaningless game sounds nothing like the eternal truths of an 5 Humanistic Philosophies Mathematical Platonism/Realism Foundational Philosophies Intuitionism Logicism Formalism Biology & Brain Finite Axioms Language Countable (All Truth) Social Construction Uncountable (Kitchen Sink) Figure 4: A synthesis of views ideal realm. But perhaps this is a false trichotomy.

Consider the often told Indian parable of blind men trying to describe an elephant. One blind man feels a serpent, another a tree, and a third a spear. While these seem very different, we know that the legs, trunk, and tusks of an elephant are all part of the same animal. Could our seemingly mutually exclusive views of mathematics simply be appendages of a greater and more inclusive truth?

What I am proposing is a triune philosophy that envelops and includes much of a wide swath of the paradigms discussed. Whereas before, we saw three world views, each with its own nuances, now we envision mathematics on a higher dimension.

trinity math

The key to this view is quite simple. Namely that the center of each of the three views represents the strength of the position. I dare say that many would agree that mathematics is a logical language we speak to describe abstract or immaterial truths.

To understand this view, it is insightful to think about what each paradigm sees as its greatest ideological adversary. We see this by comparing the center of each edge with its opposite vertex.

Example 1 Mathematics is a product of the neural capacities of our brains, the nature of our bodies, our evolution, our environment, and our long social and cultural history.

Authors Lakoff and Nunez explain their view and make it very clear who/what they view as their opposition. “Mathematics as we know it is human mathematics, a product of the human mind. Where does mathematics come from? It comes from us! We create it . . . Mathematics is a product of the neural capacities of our brains, the nature of our bodies, our evolution, our environment, and our long social and cultural history.” [8, pp. 9]

They take on Platonism very directly. They write, “Human beings can have no access to a transcendent Platonic mathematics, if it exists. A belief in Platonic mathematics is therefore a matter of faith . . . There can be no scientific evidence for or against the existence of a Platonic mathematics . . . therefore human mathematics cannot be part of a transcendent Platonic mathematics, if such exists. [8, pp. 4]

Whether you accept their argument or not, it should be clear that they see the primary counterargument to their biology & brain explanation for the origin of mathematics as what they dub “The Romance of Mathematics.” As they write, it’s the stuff of movies like 2001, Contact, and Sphere. But while it initially attracted them to mathematics, they are now more enlightened. [8, pp. xv]

Example 2 Formalism vs. mathematics as the language of science—the debate between pure vs. applied mathematics.

The distinction we make between pure and applied mathematics is relatively recent. Are we standing on the shoulders of mathematicians or physicists – a good argument can be made for both. Prior to 1900, one can make the broad generalization that there was some pure mathematics but no pure mathematicians. But around the time when the foundational philosophies were being developed, this distinction was drawn. As G.H. Hardy wrote, “Pure mathematics is on the whole distinctly more useful than applied.” [4, pp. 134] Taking this one step farther, the father of Formalism, David Hilbert is quoted as saying, “Mathematics is a game played according to certain simple rules with meaningless marks on paper.” For the formalist, mathematics was certainly a language. However, it wasn’t a language intended to communicate information outside of mathematics. Rather than being the language of science, mathematics was the language of mathematics.

The author Morris Kline wrote that most mathematicians have withdrawn from the world to concentrate on problems generated within mathematics. They have abandoned science. [7, pp. 278] Today mathematicians and physical scientists go their separate ways . . . mathematicians and scientists no longer understand each other. [7, pp. 286] Under the influence of formalism and the other foundational philosophies, mathematicians no longer speak the language of science.

Example 3 Mathematics is fallible and a social construction.

The social constructivists reject the narrow definition that math is logic. For example, the humanist Reuben Hersh is concerned with the edifice that remains in university mathematics departments. He believes that his philosophy recognizes the scope and variety of mathematics, fits into general epistemology and philosophy of science [note, science and not mathematics], is compatible with practice – research, application, teaching, history, calculation, and mathematical intuition. He also rejects certainty and indubitability as false and misleading. [5, pp. 33]

The opposition is clear: It’s the foundational philosophies (primarily formalism as the most dominant view). Proof in particular is the opponent of this view. Hersh writes, “The trouble is, ‘mathematical proof’ has two meanings. In practice it’s informal and imprecise. Practical mathematical proof is what we do to make each other believe our theorems. Theoretical mathematical proof is formal. It’s transformation of certain symbol sequences according to certain rules of logic.” [5, pp. 49] The only reason to believe in mathematics is—it works! [5, pp. 213] There is no infallibility. [5, pp. 215]

Hersh wants to redefine mathematics as fallible and a social construction. As such he must take on the establishment. And the power brokers in mathematics hold the foundational view that math is logic and as such is pure and unchanging.

Before further sharing what I call the triune philosophy of mathematics, it’s important to recognize that ideas have consequences, and that this remains a truism in the philosophy of mathematics as it is elsewhere. The way we answer “Where does math come from?” impacts research and education. Given my own background as an educator, I’d like to say few words on education.

Example 4 The philosophy of mathematics and its influence on education.

Nicolas Bourbaki is the collective pseudonym under which a group of mathematicians wrote a series of books with the goal of grounding all of mathematics in set theory. Their approach is similar to that of the formalists. The manifesto of Bourbaki has had a definite and deep influence. In secondary education the new math movement corresponded to teachers influenced by Bourbaki. ”The devastating effect of formalism on teaching has been described … [5, pp. 238]” through books like Why Johnny Can’t Add. [6]

Today we can see the influence of each major paradigm through the competition between teaching through a discovery method, cooperative learning, and skill based manipulations. Given the massive fiscal investment in mathematics education in the U.S., finding the perfect pedagogy is somewhat of a holy grail. But what if our issue is having too limited a view on mathematics? While I don’t claim to be an expert on human cognition or learning, I postulate that a pedagogy that incorporated aspects of all three major philosophies would be more attractive to the next generation of students. If you will, it’s almost a philosophical parallel to teaching to multiple learning styles.

6 A Synthesis of Views

If the three major branches of the philosophy of mathematics are not mutually exclusive, it is possible that a broader, more inclusive, philosophy of mathematics exists. Is mathematics invented or discovered – yes. I’m proposing a view that incorporates the strengths of each paradigm but that comes with some ambiguity – what I am calling, “A triune philosophy of mathematics.”

Just to clarify, this essay isn’t intended to end a discussion but rather to begin a conversation. What is good? What arguments are logically sound? What passes the experiential sniff test? This conversation is going to force us to go much deeper into the details than this paper has allowed. And as Whitehead and Russell learned full well, the devil is in the details.

triune

For me, this was the image that first opened my eyes to a triune philosophy of mathematics. It incorporates the greatest strengths of each paradigm inside a single figure. There is a common practice of mathematics between philosophies. That is, our old friends from calculus and algebra haven’t changed—the integral and derivative are calculated the same way whether discovered, invented, or based on the axioms of logic.

One powerful aspect of this model is that it gives a place to look for counterarguments. That is, the center of each edge of the original triangle is strong while its vertices are potential weaknesses. As we look to certain places to find counter examples to prove/disprove a mathematical claim, this gives us a direction to look to substantiate/discount philosophical arguments.

Bear in mind that the distinctions I am making are tentative. That is the vertices of the new solid triangle (triune math) could shift to include more/less of the gray triangle. For that matter, one might argue that these are not triangles at all, but that there are many more sides on each figure. But while I acknowledge that this is a legitimate objection and requires serious consideration, it isn’t my hypothesis.

For the humanist, the source of truth must come from within the cosmos. The Platonist says math resides outside the material world. The foundationalist says that math is from self-evident axioms and doesn’t bother to justify their existence. Going back to the parable of the blind men and the elephant, there was a clear source for higher knowledge (namely the elephant). If this triune philosophy more fully describes the nature of mathematics, then it too is likely grounded in a greater rationale.

I believe mathematics is firmly grounded in the triune God of orthodox Christianity. Following in the footsteps of Kepler, Newton, Euler and countless others, I believe that there are aspects of mathematics that go beyond the physical world:

  1. mathematics is logical and self-existent because it is part of the nature of a logical and self-existent God
  2. humans create and speak the language of mathematics as image bearers of one who walked among us
  3. we can discover eternal transcendent truth because the spirit of God speaks to each one of us

For some the very mention of God may be enough to discredit this whole triune philosophy of mathematics. For others, the selection of a specific God may be too much. I accept this critique but challenge you: Is there any existing philosophy of mathematics that fully describes the marvel and practice of mathematics? If not, could there be a greater elephant in need of description? If so, what is its size and shape?

Conclusion

So far as I know, this triune philosophy of mathematics is a new idea (perhaps discovered, perhaps invented). This essay marks the first time it has been shared in print. It’s quite possible that I will soon find out the importance of tenure as this could be the last essay I ever write. Jests aside, I anticipate next steps in two directions. The first is in answering the likely objections that this paper will receive. The second is in fleshing out the details wherein the truth most likely lies.

Is it worth it? Yes, ideas have consequences and we have gone too many years under the allusion that mathematics is a field devoid of presuppositions. This introduction to a triune philosophy of mathematics should bring this out in the open. Something needs to change in mathematics and I propose that it is how we view and understand where mathematics comes from.

References

[1] E. Bell. Mathematics: Queen and Servant of Science. Bell, London, 1952.

[2] H. Burn. Polling: When mathematics meets the real world. In Highline College: Science Seminar, 2008.

[3] G. Galilei. The Assayer. unknown, 1623.

[4] G. Hardy. A Mathematician’s Apology. Cambridge, Cambridge, 1940.

[5] R. Hersh. What is Mathematics, Really? Oxford, New York, 1997. 10

[6] M. Kline. Why Johnny Can’t Add. Random, New York, 1974.

[7] M. Kline. Mathematics: The Loss of Certainty. Oxford, New York, 1982.

[8] G. Lakoff and R. E. Nunez. Where Mathematics Comes From. Basic, New York, 2000.

[9] J. Nickel. Mathematics: Is God Silent? Ross House, Vallecito, 2001.

[10] A. Plantinga. Does God Have A Nature? Marquette, Milwaukee, 1980.

[11] H. M. Weber. Obituary for leopold kronecker. unknown, 2:5–31, 1891/2.

Case Study of Faith-Academic Discipline Integration: Statistical Inference

(Hello world! I know it has been quite some time since I posted anything new here. This semester of Ph.D. coursework has kept me otherwise engaged, and that on top of my full-time teaching responsibilities. There are a number of projects that should come to completion this summer which will give me a whole new wave of exciting posts to share. In the meantime I was grateful to receive an email from guest contributor Andrew Hartley sharing the slides and his notes from a presentation he gave at Dordt College on the integration of Christian faith and statistics. Click on the image below to view the presentation or click here. Enjoy.)

by Andrew Hartley

Andrew Hartley is the author of Christian and Humanist Foundations for Statistical Inference; Religious Control of Statistical Paradigms. For more information on this work, please visit the Resource Book page. Guest author Steve Bishop posted an interview with Andrew as part of his series on Christian Mathematicians.

Hartley Lecture

Mathematics, Infinity, and the Virtue of Humility

by Joshua Kinder

The following essay was presented at the “Virtues, Vices, and Teaching” conference hosted by the Kuyers Institute at Calvin College and is shared here with permission. 

A science which does not bring us nearer to God is worthless. But if it brings us to [God] in the wrong way, that is to say if it brings us to an imaginary God, it is worse…[1]

 “Did I get the right answer?” Students in mathematics courses ask this question, it seems, more than any other. Too often, those same students have been trained to ask about right answers by teachers who likewise obsess: “Did you get the right answer?” Classroom dialogue and assessment practices in math courses tend to be bound to the idea of the one right answer. What sort of picture does this paint of the practice of mathematics? Of mathematicians? Perhaps more importantly, what sort of world does this concern create?

This paper will introduce three thinkers along with their ideas: William Byers, a mathematician, Simone Weil, a philosopher-mystic, and Emanuel Levinas, a philosopher. After some time with each of the three, we will put their work in conversation with each other. The combination of these three will shed light on some connections between mathematics education, humility, and an ethic of nonviolence.

The light of ambiguity in mathematics

In his book, How Mathematicians Think, William Byers presents a vision of mathematics rarely seen by most non-mathematicians. His articulation of the discipline has profound implications for math educators, especially in the realm of ethical development.

Byers’s central claim is that mathematics, as a process, is a creative activity. Many of us encounter, or remember encountering, mathematics as content, as algorithmic, procedural, and cold. What is the relationship between creativity and algorithm? Can algorithms produce new ideas? Byers writes, “The creativity of mathematics does not come out of algorithmic thought; algorithms are born out of acts of creativity, and at the heart of a creative insight there is often a conflict–something problematic that doesn’t follow from one’s previous understanding.”[2] Particularly interesting in light of this paper’s subject, Byers adds, “How a person responds to the problematic tells you a great deal about them. Does the problematic pose a challenge or is it a threat to be avoided?”[3]

Three things that often characterize the problematic, in Byers’s view, are ambiguity, contradiction, and paradox. He gives considerable space to clarifying how he uses ambiguity. An ambiguous situation is one which can be understood from two self-consistent but mutually incompatible frames of reference.[4] It is the task of sorting out the ambiguous which leads to new, creative leaps in mathematics. It is this same task which leads most often to student difficulty and confusion.

To elucidate this idea of ambiguity, let’s consider an elementary example, the statement 2+3=5. On the face of it, this is a very unproblematic statement, very much unambiguous. If we dig deeper, what do we see? Often, this simple addition is taught with something like the image of a balance, with 2+3 on one side and 5 on the other. This image implies that the two sides are the same thing, but is that all the equals sign says? The equals sign in an equation is not simply a marker of sameness or identity, but is rather a sort of bridge between two worlds. Equations are mathematicians way of writing metaphors; equations are the tie that binds the two reference frames of the ambiguous. In the case of 2+3=5, the equals sign reveals a deep connection between process and object: we read that adding 2 and 3 is the same idea as the number 5. That is, the process of adding and the result of adding are two ways of looking at the same thing. “What used to be a conflict becomes a flexible viewpoint where one is free to move between the contexts of number as object and number as process.”[5]

Byers goes on to give numerous other examples of how ambiguity, contradiction, and paradox drive mathematicians ever onward towards new creative insights. What sort of person is a mathematician? What sort of character is able to enter the ambiguous, wait there for a flash of insight, and return with the gift of new knowledge? We turn now to the second of our three friends, Simone Weil, and her idea of attention.

 Simone Weil’s notion of attention

Simone Weil was a French philosopher, mystic, and political activist in the first half of the 20th century. An important idea running through her body of writing is the notion of attention, which she connects to school studies, prayer, and interpersonal relations, all of which are of interest for the purposes of this paper. (It is also interesting to note that Simone’s brother, Andre Weil, was part of the famous Bourbaki group of French mathematicians.)

In an essay titled, “Reflections on the Right Use of School Studies with a View to the Love of God,” Weil details her vision of attention, citing scenarios specific to mathematics education. Perhaps as a result of her own practice of attention, Weil’s writing displays what one commentator has described as “a revelatory certitude and restraint.”[6] She begins her essay clearly, “The key to a Christian conception of studies is the realization that prayer consists of attention…The development of the faculty of attention forms the real object and almost the sole interest of studies.”[7]

Attention is a goal of studies completely divorced from mastery of content. The time spent attending to a difficult geometry exercise, regardless of success in solving it, has benefited the student in another, “more mysterious dimension.”[8] Attention is different than simply sustaining effort over time. This “muscular effort” we see when a teacher calls students to attention is little more that just that: the muscles of the face and brow contracting, the eyes focusing, and nothing else. “Studies conducted in such a way can sometimes succeed academically from the point of view of gaining marks…[but] such studies are never of any use.”[9]

For Weil, the sort of attention worth pursuing is founded in desire, not will power. Attention is a kind of waiting, looking for the “light” without attachment to anything in particular: “Not to try to interpret…but to look…till the light suddenly dawns.”[10] Her poetic description is worth quoting at length, “Attention consists of suspending our thought, leaving it detached, empty, and ready to be penetrated by the object…Our thought should be in relation to all particular and already formulated thoughts, as a man on a mountain who, as he looks forward, sees also below him, without actually looking at them, a great many forests and plains.”[11]

Perhaps most importantly, Weil’s is an ethical attention. In her 1942 essay “Human Personality” she expounds on the value of attention as it relates to love of neighbor. She begins with the claim that what is sacred in a person is exactly that which is impersonal, that something “that goes on indomitably expecting…that good and not evil will be done to him [sic].”[12] Weil detects in every impersonality, in every soul, a ceaseless cry to be delivered from evil: “Why am I being hurt?”[13] This cry of the afflicted can be heard only when the listener comes to the limit of her own world. Each of us, Weil says, “moves in a closed space of partial truth.”[14] In order to come to the boundary of that space and move through the wall of separation, it is necessary for one to be “annihilated,” to “dwell a long time in a state…of humiliation.”[15] This choreography happens in discourse: “To listen to someone is to put oneself in his place while he is speaking. To put oneself in the place of someone whose soul is corroded by affliction, or in near danger of it, is to annihilate oneself.”[16] Weil’s final word is to identify this listening to the afflicted as the same attention with which we attend to truth. In her words, “The name of this intense, pure, disinterested, gratuitous, generous attention is love.”[17] Thus, for Simone Weil, all school studies are closely connected to the practices of prayer, love of God, and love of neighbor. It is precisely in developing our capacity to attend to truth that we develop our capacity to attend to the affliction of our neighbor.

Emanuel Levinas and the face of the Other

In Totality and Infinity, Emanuel Levinas works with the idea of the face of the Other, crafting a vision of the ethical relation which takes into account the idea of infinity and what he calls metaphysical desire. This cluster of ideas, we will see, has a strong correlation with what we’ve already seen in Byers and Weil, and helps again to bridge the mathematical and the ethical.

One of Levinas’s main projects in Totality and Infinity is to demonstrate how the idea of infinity produces a rupture in the totality. By “totality”, he refers to the idea that “individuals are reduced to being bearers of forces that command them.”[18] Totalization is the process whereby the same and the other become one thing. To be totalized is to be encompassed, swallowed up, completely known. Levinas connects totality with the history and patterns of empire and the State, as well as with the tradition of Western thought, “where the spiritual and the reasonable always reside in knowledge.”[19]

In contrast to totality, in fact undermining and rupturing it, Levinas considers the idea of infinity. Levinas, borrowing from Descartes, is fascinated by infinity because it is the one idea whose object overflows the idea itself: our minds, thinking of infinity, cannot begin to contain it. The infinite cannot be totalized. The source of the idea of infinity for Levinas is the face of the Other. “The idea of infinity, the infinitely more contained in the less, is concretely produced in the form of a relation with the face. And the idea of infinity alone maintains the exteriority of the other with respect to the same, despite this relation.”In another place he says, “In the face such as I describe…is produced the same exceeding of the act by that to which it leads. In the access to the face there is certainly also an access to the idea of God.”[20]

The origin of ethics is the face to face encounter, within which my own spontaneity is called into question by the presence of the other.[21] This calling into question is enacted by dialogue: the face speaks, I do not merely see it. “The first word of the face is…’Thou shalt not kill.’ It is an order. There is a commandment in the appearance of the face, as if a master spoke to me…At the same time, the face of the Other is destitute; it is the poor for whom I can do all and to whom I owe all.”[22] It is through this dialogue that the face resists possession, resists totalization. The face speaks as an infinity, and as such cannot be contained.

The ambiguity of the face

Having acquainted ourselves with these three, Byers, Weil, and Levinas, let us turn to the task of braiding them together if we can. Together, the three of them may illuminate connections between mathematics, virtue, and education.

The idea of ambiguity is present in each of these thinkers. This commonality, given their three quite different projects, suggests a fruitful juxtaposition. What exactly do mathematics, attention, and ethics have to do with each other?

For Levinas, ambiguity presents itself primarily in the face of the Other. The face, in dialogue, is understood alternately as interlocutor and theme. The face speaks, and I thematize it in mind, I create a certain picture of it. Without fail, this image, the other as my theme, is shattered in subsequent discourse by the other as interlocutor. Language is thus the medium by which this ambiguity of the other is revealed, and this very ambiguity is the means by which the other, in her infinity, resists totalization.[23]

In mathematics, “the concept of infinity is inherently ambiguous.”[24] Insofar as mathematics is a kind of language, it also is the medium by which the ambiguity of infinity is revealed.

“Observe the equation 1/2 + 1/4 + 1/8 + 1/16 +… = 1. On the left-hand side we seem to have incompleteness, infinite striving. On the right-hand side we have finitude, completion. There is a tension between the two sides which is a source of power and paradox. There is an overwhelming mathematical desire to bridge the gap between the finite and the infinite. We want to complete the incomplete, to catch it, to cage it, to tame it.”[25]

What we see here with an infinite sum is, I suggest, exactly what Levinas is talking about. On the left side, the infinite is resisting our attempts at totalization. We can write the terms of the sum forever, and infinity still won’t allow us to finish it. We suggest a “theme” on the right side: the list sums to one; but for students or others inexperienced with infinity there are nagging doubts. Is it really equal to 1? Can we really say that?

Mathematics is, according to mathematician Hermann Weyl, “the science of the infinite.”[26] If mathematicians consistently and habitually study infinity, then the language of mathematics must have a great deal to say about ethics in light of how Levinas has framed the subject. Thus, it is not surprising that mathematicians write above of the desire to reach the infinite, the desire so eloquently symbolized with the equals sign. And it is also not surprising that mathematicians are well acquainted with the dissonance, discomfort, and confusion so often generated by the idea of infinity. The infinite confounds the mind, and it is the task of the mathematician to attend to the infinite despite the difficulty, despite the resistance it offers. Thus, the infinite, source of so much ambiguity and paradox, source of ethics for Levinas, is also what generates the desire which leads to the attention that Weil speaks of so often.

Infinity and humility

The resistance to totalization that infinity offers, despite and because of our best practice of attention, demonstrates to the mathematician the futility of grasping at the world, trying to control it or put it in a box. The study of infinity tends to produce humility in the student. Simone Weil’s scenario of a student struggling with a geometry exercise is useful here: it is humiliating to be unable to solve a problem. We have all felt what it’s like to get back an exam with a poor score, that red ink screaming at us the fact that we didn’t know everything. Weil writes about mistakes, “When we force ourselves to fix the gaze, not only of our eyes but of our souls, upon a school exercise in which we have failed…a sense of our mediocrity is borne upon us with irresistible evidence.”[27] Paying attention to our mistakes, paying attention despite our “I don’t know”s, this is how we can develop the virtue of humility.

If attending to our ignorance is a path to humility, then attending to the infinite as the face of the Other will be most humiliating. There is an infinity in each face, an entire world we can never know. Levinas describes the resistance of the infinity of the face to any kind of completion, totalization, or domination. “The infinite paralyses power by its infinite resistance to murder, which, firm and insurmountable, gleams in the face of the Other, in the total nudity of his defenceless eyes…”[28] Here is another curious resonance between Levinas and Weil: both of them use the destitution and defenselessness of the other as a starting point for ethical thinking, and both of them start with what the destitute other says. For Levinas, the first word from the naked face is, “Thou shalt not kill,” and for Weil, the afflicted is always crying, “Why am I being hurt?”

For the one who would practice attention, who would attend to the face of the Other, humiliation is inevitable. With enough time, gazing upon the helplessness of the other becomes a gazing at our own helplessness. The face of the Other, the idea of the infinite, is a mirror. Mathematics, as the study of infinity, the practice of gazing into the infinite mirror, is thus a way toward humility. With enough time contemplating the mysteries of infinite sums, I realize I am helpless in the face of the idea of infinity. And yet, as all three of our thinkers attest, an irresistible desire to go further always remains. Isn’t that a kind of prayer?

Mathematics and nonviolence

Finally, a brief word on the contributions the practice of mathematics can make to an ethic of nonviolence. William Byers suggests that ambiguity, paradox, and contradiction are the fuel that generates mathematical creativity. Regarding process, both Byers and Simone Weil describe a kind of waiting for insight that we call attention. This practice of attention stands in contrast to the posture of totalization described by Levinas. For Levinas the spirit of the totality is the engine of war, the movement towards annihilation despite the word, “Thou shalt not kill.” This spirit of the totality would reduce the practice of mathematics from a creative enterprise to a set of algorithms for determining correct solutions. Purging the problematic from mathematics does violence to the infinite, just as committing murder does violence to the infinity of the face of the other. I submit that training mathematics students to attend to the ambiguous in mathematics, rather than training them solely in the use of algorithms, will lead to their formation as people who would rather seek multiple ways of understanding a conflict than foreshorten dialogue in the interest of their one “correct” solution. Mathematics education can serve the purposes of conflict resolution through the cultivation of attention.

 Possibilities for mathematics education

 To conclude, I will return to the question at the start of the paper, “Did I get the right answer?” There is a model of mathematics pervasive in elementary and secondary education today which presents the subject solely as a set of procedural knowledge, a collection of algorithms to be memorized, rehearsed, and mastered. Mathematics, as far as many students, exam writers, and teachers are concerned, comprises a whole lot of algorithms, some simple, some difficult, for determining the correct answer. This sort of math education necessitates the sort of “muscular effort” Simone Weil wrote about, but does very little to inculcate a capacity for attention in learners.

The vision of mathematics I’ve set forth here places the discipline within a strand of ethical and spiritual writers who do not concern themselves with right answers. Rather, the study of the infinite confronts the learner with ambiguities, uncertainties, and open endings. If math education is to further students’ journey on the road towards a virtuous life, we must begin to make room for lessons and exercises which require attention, not just muscular effort. Students must encounter the ambiguous, the contradictory, and the paradoxical in their mathematics courses.

Beyond simply encountering these, the teacher must draw their attention to the problematic, making time for students to become confused and honoring that confusion. So often, students encounter difficult math ideas as they are already understood by a teacher or expert. “If it’s so easy for the teacher, why can’t I get it already?” or “I’ll never be as smart as _______, I’ll never understand this.” Rarely do students see math ideas presented along with their historical context. Certainly, no mathematical idea was created in a quick and smooth process: creating these ideas takes time, but we don’t show that to students. Students see the end result, the idea as algorithm, and nothing more.

Also, as Weil remarks, the practice of attention requires solitude: perhaps an emphasis on groupwork detracts in some ways from students’ virtuous development in math classes.

Above all, students should leave a math course not with the sense that the world is full of correct, complete answers to be deciphered by algorithms, but rather with the sense that the world is mysterious, infinite, and not under their control.


[1]    Weil, Gravity and Grace, p. 105.

[2]    Byers. p. 23.

[3]    Byers, p. 6.

[4]    Byers, p. 28.

[5]    Byers, p. 35.

[6]    Peta Bowden. “Ethical Attention: Accumulating Understandings.” European Journal of Philosophy 6:1, p 60.

[7]    Weil, Waiting for God (2009), p. 57.

[8]    Weil (2009), p. 58.

[9]    Weil (2009), p. 59.

[10]  Weil, Gravity and Grace (1952), p. 174.

[11]  Weil (2009), p. 62.

[12]  Weil. “Human Personality.” (1986), p. 51.

[13]  Weil (1986), p. 73.

[14]  Weil, (1986), p. 69.

[15]  Weil, (1986), p. 70.

[16]  Weil, (1986), p. 71.

[17]  Weil, (1986), p. 72.

[18]  Emanuel Levinas, Totality and Infinity (1969), p. 21.

[19]  Levinas, Ethics and Infinity (1985), p. 76.

[20]  Levinas, Ethics and Infinity, p. 92.

[21]  Levinas, TI, p. 43.

[22]  Levinas, Ethics and Infinity, p. 89.

[23]  Levinas, TI, p. 195.

[24]  Byers, p. 117.

[25]  Byers, p. 118.

[26]  Quoted in Byers, p. 113.

[27]  Weil, Waiting for God, p. 60.

[28]  Levinas, TI, p. 199.